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ABSTRACT
Although we live in an era of unprecedented quantities and 
access to data, deriving actionable information from raw data 
is a hard problem. Earth observation systems (EOS) have 
experienced rapid growth and uptake in recent decades, and 
the rate at which we obtain remotely sensed images is increas-
ing. While significant effort and attention has been devoted to 
designing systems that deliver analytics ready imagery faster, 
less attention has been devoted to developing analytical fra-
meworks that enable EOS to be seamlessly integrated with 
other data for quantitative analysis. Discrete global grid sys-
tems (DGGS) have been proposed as one potential solution 
that addresses the challenge of geospatial data integration 
and interoperability. Here, we propose the systematic exten-
sion of EASE-Grid in order to provide DGGS-like characteristics 
for EOS data sets. We describe the extensions as well as pre-
sent implementation as an application programming interface 
(API), which forms part of the University of Minnesota’s GEMS 
(Genetic x Environment x Management x Socioeconomic) 
Informatics Center’s API portfolio.
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1. Introduction

We live in an unprecedented era, where quantitative descriptors are collected for nearly 
every facet of human development and natural phenomena we collectively deem impor-
tant (Miller & Goodchild, 2015; Rosling, Rosling, & Ronnlund, 2020). In the Earth sciences 
alone, individual data archives exceed the petabyte scale; in 2015 alone NASA’s Earth 
Observing System (EOS) Data and Information System distributed more than 9,400 dis-
tinct data products to 2.6 million distinct users (Lynnes, Baynes, & McInerney, 2016). While 
EOS data have always been big data, both the rate at which we are accumulating it and 
the variety of data we gather are rapidly increasing (Open Geospatial Consortium, 2017a). 
Accompanying the rapid expansion of Earth observing systems, advances in portable 
electronics have also resulted in exceptional growth in global sensor networks (Purss 
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et al., 2017). This proliferation of sensors has shifted scientific computing away from 
a centralized paradigm to one where analytical processes are increasingly distributed 
across systems connected via the Internet.

In isolation, individual sets of descriptors, whether they are from Earth observation 
platforms or sensor networks, have limited utility or intrinsic value. It is mainly through 
integration and combination with additional descriptors that patterns emerge, relation-
ships are quantified, and information can be derived from raw data. Information, in turn, 
fuels insight and scientific understanding, key requirements for evidenced-based deci-
sion-making. Since its inception as a quantitative discipline, geographic information 
science has been driven by a desire to apply quantitative methods to Earth observation 
information to improve resource management decision-making (Goodchild, 2018; 
Peterson, 2017). Seemingly simple questions such as: ’how much suitable land is available 
for agricultural uses that is not already being used for other purposes?’ motivated the 
development of early geographic information systems (GIS).

The integration of disparate geospatial data types is traditionally a hard problem. The 
difficulties in combining geospatial data have historical roots in technological limitations 
of early computers during the shift from predominantly qualitative uses of cartographic 
maps to the emergence of quantitative, geospatial analysis (Goodchild, 2018). Early 
geographic information systems were predominantly centered on vector data types 
(points, lines, polygon) (Goodchild, 2018), though subsequent developments gave rise 
to systems that dealt primarily with gridded data types, like rasters/imagery (Peterson, 
2017). The partitioning of the geospatial world into vector-based and raster based solu-
tions persists today, making the original aim of integration and inter-operation of geos-
patial data for resource management decisions possible, but it requires considerable time 
and the expertise of highly trained professionals (Goodchild, 2018).

The rise of the Internet and its capacity for rapid global data transfer has simulta-
neously driven expectations and desires to accelerate information generation processes 
to support decision-making in near real-time. The historical legacies of traditional GIS 
software, tools, and data formats constrain the capacity to increase the rate at which 
information are gleaned using disparate geospatial data sets. Technological innovations 
are needed to overcome traditional limitations (Goodchild, 2018). The technology of 
discrete global grid systems (DGGS) has been proposed as one means of overcoming 
those limitations, thereby enabling potentially accelerated information discovery pro-
cesses using geospatial data (Open Geospatial Consortium, 2017c).

Within the Earth observation community, the need to increase the rate of information 
production has resulted in several domain-specific solutions. Innovations designed to 
reduce data processing overhead have included: shifting away from minimally processed 
data towards the production of data that are analysis ready (Dhu et al., 2017; Dwyer et al., 
2018; Potapov et al., 2020) and the creation of image processing frameworks, such as data 
cubes, which allow for increased integration of Earth observation data from different 
sensor types and resolutions (Lewis et al., 2017). These systems are predominantly geared 
towards data processing, and not towards facilitating data integration, creating intero-
perable data types or accelerating information generation from disparate sources.

DGGS are a technology designed specifically for data integration and information 
retrieval. They have been proposed as a useful technology for solving the issues with 
data integration, thereby accelerating the ’geospatial intelligence cycle’ (Consortium, 
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Open Geospatial, 2017c). The aim of this paper is to present and describe a hybrid DGGS 
built upon the Equal-Area Scalable Earth Grid (EASE-Grid 2.0, hereafter, EASE-Grid) frame-
work of Brodzik, Billingsley, Haran, Raup, and Savoie (2012, 2014). We refer to the 
proposed system as EASE-DGGS. To demonstrate the need and utility for EASE-DGGS, 
we describe key aspects of DGGS, before reviewing current DGGS solutions. The review 
highlights the limitations of current DGGS offerings, notably their limitations regarding 
common Earth observation systems. We propose a solution that leverages the enhanced 
EASE-Grid solution described by Brodzik et al. (2012, 2014). We discuss the foundational 
components of EASE-Grid, before discussing our solution for systematizing a nested 
hierarchy of grids, thereby creating a DGGS framework from EASE-Grid.

2. Discrete global grid systems

Despite the fact that early DGGS efforts date back to the mid-1980s with the work of 
Tobler and Chen (1985) there have been few widely available DGGS options until recently. 
In recent years, there appears to have been a flurry of activity, with new systems proposed 
that include: H3, the hexagonal grid system that underpins Uber Technology’s market- 
based ride sharing application (2018); and rHEALPix, a quadrilateral DGGS proposed by 
Gibb (2016). Open-source software repositories exist for both H3 (2018) and rHEALPix 
(2021). Application of the rHEALPix DGGS to Australia and New Zealand were presented 
by (Purss et al. (2013), use in Canada examined by Bowater and Stefanakis (2018), and its 
application to a gazetteer can be found in Adams (2017). Readers interested in the origins 
of DGGS and the limitation of traditional GIS systems are directed to Goodchild (2018) and 
Peterson (2017). While comprehensive review of the DGGS literature and associated 
design criteria are beyond the scope of this paper, a review of some salient technical 
details of DGGS their design characteristics is presented in the Supplementary Materials. 
For convenience, a brief overview of the key aspects of DGGS and some of their limitations 
are discussed below.

2.1. Key aspects of discrete global grid systems

In essence, DGGS are a technology that have been proposed to overcome limitations of 
traditional spatial analysis (Goodchild, 2018; Peterson, 2017). A DGGS provides a way of 
referencing geospatial information that embraces the realities and inherent uncertainties 
associated with geolocating observations (Goodchild, 2018; International Standards 
Organization, 2021; Purss et al., 2015) and they seek to accelerate and enhance the 
retrieval of spatial information from underlying databases (International Standards 
Organization, 2021). The aim of a DGGS is to effectively engineer away the more time 
consuming, arduous, and subjective analytical decisions that often fall under the purview 
of ’data preprocessing’ in the remote sensing and GIS literature.

At its core, a DGGS is a spatial reference system for the surface of the Earth 
(International Standards Organization, 2021). With traditional coordinate reference sys-
tems, spatial locations on the Earth’s surface as characterized using tuples of coordinates, 
such as: longitude, latitude or eastings, northings. In contrast, DGGS use aerial units, or 
grid cells, to describe locations on the surface. In this sense, a DGGS is similar to the 
traditional raster data model, which also uses areal units (pixels) to store geospatial 
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information. Whereas traditional rasters comprise rectangular cells, the grid cells of 
a DGGS are not similarly constrained: common regular polygons used in DGGS include 
squares, triangles, and hexagons (Mahdavi Amiri, Alderson, & Samavati, 2019; Peterson, 
2017).

Because the grid cell is the basic spatial unit within a DGGS, the grid identifier (ID) 
becomes the way of referencing spatial locations. There are at least three primary 
methods for assigning identifiers (Alderson, 2020): hierarchy-based indexes; indices 
based on space-filling curves; or axes-based indexing (see Supplementary Materials). 
Irrespective of their underlying derivation, the grid ID provides the spatial reference, 
with each grid ID representing a unique, and discrete portion of of the Earth’s surface. 
Because DGGS are intended to simplify and facilitate spatial analysis, it is desirable that 
DGGS grid cells should represent equivalent areas of the Earth’s surface (Tobler & Chen, 
1985). That is, DGGS grid cells should be equal in area; many resource management, 
economic, or agricultural analyses involve spatial inter comparison comparison 
between derived statics, such as densities or rates, in order to arrive at a relevant 
decision.

Finally, DGGS have one additional key characteristic: that of hierarchical refinement 
(Supplementary Materials). A traditional raster has a single, fixed resolution. In contrast, 
a DGGS comprises multiple grids, arranged in a hierarchical fashion, with each level in the 
hierarchy representing progressively finer, and finer spatial resolutions (Goodchild, 2018; 
Peterson, 2017; Tobler & Chen, 1985). While a spatial analyst can always resample 
a traditional raster to some arbitrary coarser or finer spatial resolution, the resolutions 
of a DGGS are essentially fixed. They are an intrinsic property of the grid system, and 
defined in advance, when the system is constructed.

2.2. Limitations of DGGS for integrating E0S data

A comparative review of several state-of-the-art DGGS was recently presented by 
Bondaruk, Roberts, and Robertson (2020). Their review assesses four DGGS for compliance 
with the DGGS standards proposed by the Open Geospatial Consortium (2017c). An 
updated summary of their assessment is presented in the Supplementary Materials; that 
summary also includes an assessment the of rHEALPix DGGS proposed by Gibb (2016). 
Rather than providing a comprehensive critique of DGGS, the main aim here is to draw 
attention to potential limits of DGGS for integrating EOS data. These limits form the basis 
the proposed EASE-DGGS.

EOS data are an increasingly valuable and important source of spatial information. In 
spite of this, there is a challenge when trying to determine a DGGS that is suitable for use 
with EOS data. One challenge relates to finding a DGGS with cell resolutions that 
correspond with the native pixel resolution of EOS datasets. Table 1 presents a range of 
pixel sizes associated with EOS data that either have a history of use in the Earth sciences 
(e.g. Landsat, MODIS) or newer systems that build upon the legacy of established sensors 
(e.g. Sentinel-2, VIIRS). Also included in that list are high-resolution commercial sensors 
that have been employed in Earth sciences (WorldView) as well as a commercial con-
stellation of high-spatial sensors (Planet) that in concert effectively sample the Earth’s 
surface with unparalleled temporal frequency. Table 2 presents the grid cell resolutions 
for both H3 and resolutions for two different refinement ratios for rHEALPix. When 
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considering the range of spatial resolutions of EOS systems (Table 1), it is clear that there is 
no obvious, direct correspondence between the resolutions of EOS systems (Table 1) and 
those available in either H3 or rHEALPix (Table 2).

Another challenge with most DGGS is their relative lack of support within existing 
geospatial libraries and software. For example, very few of the existing systems appear to 
have much support for the common formats used to convey spatial reference informa-
tion: EPSG codes, Well-known-text, or proj-4 codes. rHEALPix Gibb (2016) is an exception, 
as it does have a proj-4 entry. The Snyder icosahedral projection (Snyder, 1992), which 
underpins several DGGS (e.g. Barnes and Sahr (2018), Technologies, Uber (2018), and Ltd., 
Riskaware (2017)), also has a proj-4 entry, though the specific DGGS implementations do 
not. Finally, nearly all of the currently available DGGS are limited in their capacity to 
simultaneously represent the entire surface of the Earth. Although the 3D basis of 
geodesic reference systems generally results in overall less distortion of the Earth’s surface 
(Purss et al., 2017; Sahr, 2003), the underlying choice of a platonic solid results in 
discontinuities and distortions of geographic features along the edges of the platonic 
solid, particularly when the entire Earth surface is represented simultaneously (Snyder, 
1992). An example of these types of discontinuities is evident in Figure 1(a). The choice of 

Table 1. Example of common Earth observa-
tion systems and their respective pixel sizes.

EO System On-ground resolutions (m)

WorldView-3 0.31/1.24/3.70
Planet 0.50
SPOT-7 1.5/6
Sentinel-2 10/20/60
Landsat-8 15/30/100
MODIS 250/500/1000
VIIRS 375/750

Table 2. Comparison of cell sizes between H3 and rHEALPix at various refinement ratios. For this 
comparison, H3 cells are treated as a circle with an equivalent diameter.

DGGS H3 rHEALPix rHEALPix rHEALPix

Ref. Ratio 7 4 9 14

Level Equiv. diameter (m) Cell Width (m) Cell Width (m) Cell Width (m)

0 2,326,362.90 10,013,169.15 10,013,169.15 10,013,169.15
1 879,282.53 5,006,584.58 3,337,723.05 2,503,292.29
2 332,337.56 2,503,292.29 1,112,574.35 625,823.07
3 125,611.79 1,251,646.14 370,858.12 156,455.77
4 47,476.79 625,823.07 123,619.37 39,113.94
5 17,944.54 312,911.54 41,206.46 9778.49
6 6782.40 156,455.77 13,735.49 2444.62
7 2563.51 78,227.88 4578.50 611.16
8 968.91 39,113.94 1526.17 152.79
9 366.22 19,556.97 508.72 38.20
10 138.42 9778.49 169.57 9.55
11 52.32 4889.24 56.52 2.39
12 19.77 2444.62 18.84 0.60
13 7.48 1222.31 6.28 0.15
14 2.83 611.16 2.09 0.04
15 1.07 305.58 0.70 0.01
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orientation of the figure results in land mass of North America remaining intact, while the 
continents of Europe and Asia are divided across two panels. Although alternative 
representations are possible, for example those that emphasize more of Asia or Europe, 
there is no representation that results in the Eurasian landmass remaining intact. 
Furthermore, geographic discontinuities will be more pronounced on DGGS where 
a higher order platonic solid is use for the underlying datum. Ultimately, the choice of 
whether or not to trade off discontinuities in geographic features for potential reductions 

Figure 1. Comparison of the discontinuities and distortions of two equal area representations of the 
Earth’s surface: a) representation using the rHEALPix hexadron datum; and b) projected representation 
using EASE Grid version 2. Note that the Orange ellipses are Tissot’s indicatrices, which indicate the 
amount and direction of surface distortion at various locations.
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in overall surface distortion likely depends on the aims of the analyst and the uses for 
which a proposed DGGS is envisioned. To a polar scientist, the distortions evident in both 
Figure 1(a,b) are likely unacceptable as would be a DGGS based on them. To an agrono-
mist and agricultural economist interested in understanding and characterizing the global 
distribution of crop production in a changing climate, being able to visualize and compare 
different regions at a glance (1 b) may ultimately be worth the trade off in distortion at the 
extreme poleward extents of the map.

3. Systematic extension to EASE-Grid 2.0

One of the motivations for developing the work described below is to facilitate the data 
integration process for agroinformatic analyses. The Genomics x Environment 
x Management x Socioeconomic (GEMS) is an initiative at the University of Minnesota 
that seeks to accelerate agricultural innovation and research by bringing the data revolu-
tion to agriculture. GEMS is an international agroinformatics initiative jointly led by the 
College of Food, Agricultural and Natural Resources Sciences (CFANS) and the Minnesota 
Supercomputing Institute (MSI) at the University of Minnesota. GEMS seeks to turn 
agricultural data into actionable information by making data interoperable across knowl-
edge domains, and foster data sharing and innovation across public and private interests.

When considering the need for solutions that accelerate the rate at which informa-
tion is derived from geospatial data, a primary source of much of that data are and will 
increasingly be from Earth observation systems. Considering the limitations of current 
DGGS outlined above, there is a need for a DGGS system that simultaneously 

Figure 2. Hierarchical schema and decomposition of the Grid ID naming convention.
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addresses both needs and limitations. We have created such a system, and in this 
section we describe it and key functional aspects and components. Because the 
system is built upon the revised EASE-Grid projected coordinate reference systems 
described by Brodzik et al. (2012) and Brodzik et al. (2014) we start by presenting key 
aspects of EASE-Grid version 2, before moving on to describe the systematization and 
characteristics of what we call EASE-DGGS and its implementation as an application 
programming interface (API) within the GEMS Informatics Center’s API portfolio.

3.1. Advantages of EASE-Grid

The original intent of the Equal-Area Scalable Earth Grid (EASE-Grid) was for storage and 
retrieval of passive microwave observations obtained by the Special Sensor Microwave 
Imager (SSM/I) on-board the NOAA/NASA Pathfinder satellite (Brodzik & Knowles, 2002). 
The intent of EASE-Grid was for a coordinate reference system that served as a ’fixed 
geographic look-up table’ but also a system that faithfully represented the underlying 
resolution and fidelity of the original passive microwave observations of the Earth’s 
surface. The original EASE-Grid specification described 25 × 25 km grid lattices for 
Lambert’s azimuthal projections of both northern and southern hemispheres, as well 
as an equal area cylindrical projection for the entire globe. A convenient side effect of 

Figure 3. Representation of the address-indexing scheme underpinning EASE-DGGS. Note that all 
coordinate pairs are in y, x (row, column) order.
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the equal-area design choices for EASE-Grid was the simplicity of areal statistical 
calculations, leading to a secondary meaning for EASE; meaning the grid was ’easy 
to use.’

The popularity and success of the original EASE-Grid prompted Brodzik et al. (2012) and 
Brodzik et al. (2014) to eventually both refine and extend the original system. One 
improvement was to reference the version 2 grids to the WGS-84 datum rather than to 
the spherical datum of the original. This change in datum was intended to increase the 
likelihood that common geospatial libraries and packages would be able to better 
accommodate the new grid, thus reducing the possibilities for introducing errors into 
analyses. Another improvement adopted into version 2 of EASE-Grid was the choice to 
nest child cells. Whereas the original EASE-Grid definitions resulted in imperfect contain-
ment of child cells by their parents when refined, the current specification for EASE-Grid 
(version 2) results in perfect containment of children by parents.

Clarke (2000) noted that broad uptake and citation in the literature are indicators of 
authority and an additional criterion for discrete global grid systems. The ’easy-to-use’ 
moniker of the original EASE-Grid remains, as it has been adopted by a number of 
different data providers. Amongst the data sets and providers that have reported adopt-
ing the updated version of EASE-Grid include the global SMOS soil moisture and bright-
ness temperature (Al Bitar et al., 2017), MEaSUREs enhanced brightness temperatures 
(Brodzik, Long, Hardman, Paget, & Armstrong, 2016), MEaSUREs Northern Hemishpere 
weekly snow-cover and sea-ice extent (Brodzik & Armstrong, 2013), SMAP rSIR version 1 
(Brodzik, Long, & Hardman, 2019) and 2 (Brodzik, Long, & Hardman, 2021), SMAP 9 km 
(Entekhabi, Das, Njoku, Johnson, & Shi, 2016), SMAP 3 km (Kim et al., 2016), SMAP land-
scape freeze-thaw (Kim, Kimball, Glassy, & Du, 2017a), MEaSUREs freeze-thaw (Kim, 
Kimball, & McDonald, 2017b), Arctic sea-surface salinity (Martínez, Gabarró, & Turiel, 
2019), MEaSUREs Greenland surface melt (Mote, 2014), and Northern Hemisphere snow 
cover extent (Robinson & Estilow, 2012).

3.2. EASE-Grid extension

EASE-Grid version 2 defines grids at several different resolutions. These resolutions can be 
categorized as representing either refinements of base 25 × 25 km cells (e.g. 
12.5 × 12.5 km, 6.25 × 6.25 km, and 3.125 × 3.125 km) or refinements of base 
36 × 36 km cells (9 x 9 km, 3 × 3 km, and 1 × 1 km). For the systematization described 

Table 3. Refinement ratio for each level of EASE-DGGS and corresponding 
cell resolution. Refinement ratio is currently not defined below Level 6.

Level Ref. Ratio Num. Cells Cell dimensions [meters]

0 16 391,384 36,032.22084 × 36,032.22084
1 9 1,565,536 9008.05521 × 9008.05521
2 9 4,696,608 3002.68507 × 3002.68507
3 100 14,089,824 1000.89502 × 1000.89502
4 100 140,898,240 100.08950 × 100.08950
5 100 1,408,982,400 10.00895 × 10.00895
6 N.D. 14,089,824,000 1.000895 × 1.000895
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here, we chose the 36 km as the basis for EASE-DGGS and we further propose additional 
refinement down to 1 × 1 m. Table 3 contains the full specification of cell refinements and 
with associated refinement ratios. Note that whereas other DGGS tend to opt for a single 
fixed refinement ratio throughout their hierarchy, we have opted for mixed refinement 
ratios, to allow for improved correspondence with common sources of Earth observation 
data (Table 1). To maintain perfectly square grid cells, EASE-DGGS described herein is 
further constrained to locations between longitude of −180.0 to 180.0 and latitudes of 
85.045 to −85.045 (Table 4).

For indexing the grid cells, we employ a hierarchical approach (Figure 2) that also 
incorporates an axis-based solution (Figure 3). Because children are perfectly nested within 
parent cells (Brodzik et al., 2012), we start by referencing cells by rows, starting from the 
upper left corner of the grid (Figure 3). Thus at the highest level of the hierarchy (Level 0) 
cells are referenced using both their three digit row number (000–405) followed by their 
column number (000–963). With further refinement, the base index is appended, following 
the row-major format. For Level 1, the Level 0 parent is appended with the row, column 
index of the refined child cell (Figure 2).

Clarke (2000) also indicated that grid systems that are intuitive and easier to use are 
preferable to those that are not. In line with this thinking, we adopt a dotted decimal 
notation: levels are separated using ’.Figure 3’. In addition, the hierarchical level of the cell 
is also indicated using an L, with an integer corresponding to the level within hierarchy 
(Level 0: L0, Level 1: L1, etc – 2). This dotted decimal notation is similar to the familiar 
Internet Protocol Addressing (v4). It makes identifying parent cells, and navigating up the 
child-parent hierarchy a straightforward process. The indexing scheme also has the added 
benefit that indexes also represent the location of the refined cell within each parent. That 
is, starting from the upper left corner of parent, the cell identifier represents both the 

Table 4. Longitude, latitude, and EASE-Grid coordinates (x, y) for the upper left and lower right of the 
EASE-DGGS.

Grid locations Longitude Latitude EASE X [m] EASE Y [m]

Upper-left −180.0 85.04456640 −17,367,530.445161372 7,314,540.830638504
Lower-right 180.0 −85.04456640 17,367,530.445161372 −7,314,540.830638504

Table 5. The address-indexing scheme is compatible with a 64-bit address 
space representation.

Bit Range Type Description

0–6 Bit flag Indicates hierarchy level.
7–15 Integer Indicates Level 0 row.
16–25 Integer Indicates Level 0 column.
26–29 Integer Indicates Level 1 pixel location in Level 0 cell.
30–33 Integer Indicates Level 2 pixel location in Level 1 cell.
34–37 Integer Indicates Level 3 pixel location in Level 2 cell.
38–45 Integer Indicates Level 4 pixel location in Level 3 cell.
46–52 Integer Indicates Level 5 pixel location in Level 4 cell.
53–59 Integer Indicates Level 6 pixel location in Level 5 cell.
60–63 – Unused.
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index and location of the child within its parent cell. Although the hierarchical dotted 
decimal format is selected for the purpose of ease of use and human readability, it is 
noted that it is possible to represent the entire scheme using 64-bit integers (Table 5).

3.3. Implementing an API for the GEMS Platform

We implemented the EASE-DGGS library in the python programming language and have 
developed a publicly accessible API. Documentation for the API functionality and schema 
is available through the URL: https://gems.umn.edu/exchange/grid with supported meth-
ods accessible through this URL. It contains functions for converting from geographic 
coordinates to EASE-DGGS grid IDs, and for converting from grid IDs to geographic 
coordinates (Table 6). There are also functions for enumerating the children of parent 
cells by level, and the reverse. The library also contains functions for identifying all grid IDs 
that are contained within geographic polygons (e.g. polygons as WKT). Aggregation 
functions that allow for summarizing data at coarser resolution (e.g. counts, means, 
modes, medians) have also been implemented within the API.

4. Discussion

In this manuscript, we have proposed the systematic extension of EASE-Grid in 
order to give it the key characteristic of a DGGS. These extensions are intended to 
overcome limitations associated with existing DGGS. The advantages of the pro-
posed systems include improved correspondence with EOS observations, broad 
compatibility with existing geospatial software and underlying libraries, as well as 
good support for global visualizations and analysis. This section discusses these 
advantages, in addition to outlining and addressing the broader challenges asso-
ciated with accelerating the rate of information and knowledge generation from 
EOS data.

The improved correspondence between EOS observations and the resolutions sup-
ported by EASE-DGGS are one advantage of the proposed extension. EOS observations 
are an important data source for resource management and agricultural applications, and 
being able to combine data obtained at different resolutions is a common, pre-processing 
step in image analysis. Decisions regarding image re-sampling have traditionally relied 
upon the judgment and experience of the image analysts, and it was the analysts 
themselves that were responsible for ensuring that data sets were spatially aligned, 

Table 6. Initial functions supported by GEMS Grid API.
Function Name Description

points_to_grid Map points (and optional values) to GEMS Grid cells at provided resolution.
poly_to_grid Given a GeoJSON polygon and a specified grid resolution level, return the corresponding GEMS 

grid cell IDs.
grids_to_geom Given a list of GEMS grid cell IDs, return a list of lon/lat values corresponding to the grid cell 

centroids and a polygon. Output points provided in GeoJSON.
get_grid_parents Given a list of GEMS grid cell IDs, return a list of the parents of those grid IDs.
get_grid_children Given a list of GEMS grid cell IDs, return a nested list of the children of each input grid ID
aggregate Given GEMS grid cell IDs with a value associated with each Grid ID, return corresponding GEMS grid 

cell IDs with aggregated values at a specified grid resolution level coarser than that provided.
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with common dimensions. Systematizing and specifying the hierarchy of supported 
resolutions and defining the rules for navigating the hierarchy in advance means that 
the analyst need only define the spatial extent for a given analysis, and select a resolution 
for analysis. This ensures that data are spatially aligned, and have shared image dimen-
sions (e.g. identical numbers of rows, columns).

Another advantage of the proposed system is that EASE-Grid, the spatial reference 
system underpinning EASE-DGGS, is readily compatible with widely used software and 
libraries. For example, EASE-Grid has an entry in the European Petroleum Survey Group 
(EPSG) registry, which is commonly supported format that allows for seemless integration 
with a wide variety of both commercial geospatial software and open-source libraries. In 
contrast, the spatial referencing systems that underpin existing DGGS currently either 
require specific libraries in particular programming languages, such as dggridR (Barnes & 
Sahr, 2018) or where they have been made available in multiple languages (e.g. H3 of 
Technologies, Uber (2018)), their use still requires considerable technical and program-
matic ability.

The final advantage of the proposed system pertains to visualisation of global data sets. 
Because most of the existing DGGS are constructed using geodesic reference systems (e.g. 
using platonic solids) there are challenges when using them displaying the entirety of the 
Earth’s surface (Snyder, 1992). This limitation is often dismissed as being of secondary 
importance, as it only relates to visualization, (e.g. Goodchild, 2018). The view that 
visualization is somehow secondary in importance to computation or analysis is not 
new; similar debate regarding the ’proper’ or appropriate role of visualization in statistics 
was addressed in the 1970s by Anscombe (1973). Similarly, rather than suggesting 
visualizations only play a secondary role in geospatial analysis, we suggest instead that 
visualization itself is integral to the analytical process. Often it is the context of character-
ising ’what’ alongside the ’where’ that testable hypothesis of ’how’ and ’why’ of spatial 
phenomenon are formed (Yuan, 2020). Because spatial analyses have only tended to 
addressed questions of local or regional relevance (Goodchild, 2018), this lack of good, 
global visualization capacity has likely contributed to the perception that geospatial 
visualization is of secondary importance. Because our primary interest is to characterize, 
understand, and improve global agricultural practices in the context of climate change, 
we suggest that visualization itself is an integral part of geospatial analysis in this context.

The importance of analytical context cannot be understated, nor should it be summa-
rily dismissed. It is important to recognize that DGGS are at heart a form of spatial 
reference system designed to address the limitations associated with traditional geospa-
tial analysis (Open Geospatial Consortium, 2017c; International Standards Organization, 
2021). In some senses, DGGS have similarities with traditional map projections and 
coordinate reference systems that they seek to replace. It is worth noting that, to date, 
no one single ’ideal’ map projection has ever been identified unless the design require-
ments have been arbitrarily restricted (Snyder, 1997). Similarly, given the trade-offs 
inherent in DGGS design characteristics, it seems unlikely that consensus will emerge 
on an ’ideal’ reference system. Hence an ’optimal’ DGGS will likely remain elusive.

In addition to the advantages outlined above, as noted previously, EASE-Grid itself 
has already been adopted as the spatial reference system by several different EOS 
data providers. This uptake is important; part of the OGC’s rationale for DGGS is the 
recognition that traditional data archives need to adopt new data models and 
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formats (Open Geospatial Consortium, 2017b). EASE-Grid addresses many of the 
limitations of other coordinate reference systems (e.g. Mercator, plate carrée) identi-
fied by the OGC as motivating the development DGGS (International Standards 
Organization, 2021). According to Clarke (2000), the adoption of EASE-Grid by the 
remote sensing community can be construed as providing additional justification and 
legitimacy to the approach presented herein. It should also be noted that the 
approach outlined herein shares similarities with the DGGS solution posited by 
Tobler and Chen (1985).

As noted in the Introduction, the current volume of public EOS data is already sub-
stantial. The rate of data acquisitions is only accelerating, as commercial companies now 
image the entire Earth’s surface with both high spatial and temporal frequency. While the 
aim of DGGS is to facilitate the creation of information and knowledge by engineering 
away limitations of traditional GIS systems thereby removing analytical barriers (Open 
Geospatial Consortium, 2017b). it is important to acknowledge that a single ’ideal’ or 
’optimal’ DGGS reference system may ultimately prove unobtainable. Irrespective of 
whether or not an ’optimal’ system could be agreed upon, the amount of time, energy, 
and effort required to reprocess entire image repositories would likely prove to be 
a substantial barrier for adoption. This highlights the need to bring the remote sensing 
community, geospatial professionals, and big data engineers together to identify ways in 
which existing technologies and solutions can be leveraged to address these issues.

5. Conclusion

We have presented a systematic extension of EASE-Grid 2.0, which was originally 
described by Brodzik and others (Brodzik et al., 2012). We refer to this systematic exten-
sion as EASE-DGGS. This framework leverages the base 36 × 36 km spatial resolution and 
provides for grid cell indexing to 1 × 1 m resolution. This proposed framework overcomes 
the limitations of existing DGGS frameworks. It provides better correspondence between 
the DGGS and the native resolution of many common Earth observation platforms. 
Additionally, it also overcomes specifics limitations of H3, notably the lack of parent– 
child containment and the associated lack of statistical inversion between levels.

It is noted that further refinement of the system is possible. For example, a Level 7 
refinement using refinement ratio 4 would result in cells that approach the resolution of the 
Planet constellation of satellites and sensors (0.5 x 0.5 m). Although EASE-DGGS does more 
closely represent the native resolutions of Earth observation systems (Table 1) it does so at 
the expense of an increase in data storage volumes. Representing a single 30 m Landsat 
pixel, for example, requires using multiple Level 5 pixels. This represents an increase in 
storage volume by a factor of 9 times. Similarly, accommodating 500 m MODIS pixels at 
approximately their native resolution would increase storage requirement by 25 times.

In spite of this limitation, we propose that the systematic extension of EASE-Grid into 
a DGGS offers a potential advantage over existing DGGS particularly for integrating 
existing EOS data streams. Given the strong adoption of EASE-Grid version 2 within 
existing Earth science data streams, EASE-DGGS can provide a framework that enables 
interoperability, thus offering the potential for accelerated information generation from 
those Earth observation data streams.
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